4
Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. We demonstrate a hybridization strategy synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. Our work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature. We demonstrate the effect of hybridization across well-studied cMOFs based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaiminotripphenylene (HITP) ligands with varied metal nodes (Co, Cu, Ni). We conduct a comprehensive mechanistic study to relate energy band alignments at the heterojunctions between the MOFs and the polymer with sensing thermodynamics and binding kinetics. Our findings reveal that hole enrichment of the cMOF component upon hybridization leads to selective enhancement in desorption kinetics, enabling significantly improved sensor recovery at room temperature, and thus long-term response retention. This mechanism was further supported by density functional theory calculations on sorbate-analyte interactions. We also find that alloying cPs and cMOFs enables facile thin film co-processing and device integration, potentially unlocking the use of these hybrid conductors in diverse electronic applications.
You must log in or register to comment.