Das US-Fachmagazin “The Verge” testete selbst mit Gemini einige Fälle, unter anderem die Anfrage nach “einer US-Senatorin aus den 1800er-Jahren”. Das Ergebnis lieferte unter anderem schwarze und indigene Frauen. Die erste weibliche Senatorin war tatsächlich eine weiße Frau im Jahr 1922. Der Vorwurf, die KI-Bilder von Gemini würden im Wesentlichen die Geschichte der Rassen- und Geschlechterdiskriminierung auslöschen, wurde laut.
Das stimmt so auch nicht. Neuronale Netze sind sehr gut in Logik und Mathe. Wenn man sie darauf trainiert.
LLMs sind nur ein Beispiel von neuronalen Netzen und sie sind darauf trainiert auf den ersten Blick plausibel klingende Aussagen zu treffen, nicht wahre Aussagen.
Sie werden einfach falsch eingesetzt.
Ja gut, man kann beliebige Funktionen annähern, also auch logische und mathematische. Aber sowas ist wohl eher was für Inferenzmaschinen usw. Ich wüsste jedenfalls keine konkrete Anwendung im Bereich Logik/Mathe, wo NNs sinnvoll eingesetzt werden. (Oder hab ich was verpennt?)
Meinst du mit Inferenzmaschinen sowas hier? Logical Neural Networks Du hast natürlich Recht, dass es für Mathematik etwas überflüssig ist, weil du die allermeisten Berechnungen ohne NN schneller hinbekommst.
Ich bin im Kontext von Vorsagemodellen für z.B. Energienachfrage und Wassernachfrage und Abwasseranfall häufiger auf die Verbindung von Neuronalen Netzen mit Fuzzy Logic gestoßen. Das ist natürlich nicht Logik im Sinne von mathematischer Aussagenlogik, wie etwa zum Beweisen von mathematischen Sätzen. Es ermöglicht jedoch ein neuronales Netzwerk unter Berücksichtigung von bestimmten logischen Vorgaben zu trainieren.
Inferenzmaschine. Naja, kein großartiger Artikel.
Wahrscheinlich hast du den Rechner schon mal Gleichungen vereinfachen lassen. So etwas, nur eben mit logischen Systemen im Allgemeinen und nicht nur Algebra.