One massive point that most people are completely blind to is that with energy considerations we are aggressively pursuing two very different goals that in many regards are directly at odds with one another.
The first goal is electrification, which can largely be accomplished by increasing renewables, investing in battery technology, etc. But in the US, we have also been accommodating the desire for electrification by massively increasing natural gas capacity.
The second goal is decarbonization. This requires us to also nix natural gas from the equation at some point. In addition to the problems others have already mentioned (like the fact that renewables aside from hydro are not viable base load power options right now), there is a significant chunk of our energy infrastructure that simply cannot be satisfied in any regard purely with renewables. Like the huge number of industrial processes that need process heat to achieve their end product.
So the best solution is energy portfolio diversity. We can steadily continue to phase out heavy polluters for electrification, but if we want to truly decarbonize, industry demands a solution that can still produce high heat without emissions. Nuclear is a woefully under-exploited technology in that regard, but it is potentially a great solution.
Yup, it’s hard to predict what the mix will look like, but 100% solar would be a very costly solution for sure.
I used to be very pro nuclear, and I still think it could have been a big piece of the puzzle, but I do worry we’ve missed the boat, it could’ve been the first wave of decarbonisation 20 (or more) years ago, I’m not sure how well it can compete growing from almost nothing now with the renewables eating all the easy money. nuclear plants need to run 100% to be successful, and renewables have dropped a bomb on the concept of baseline demand. Maybe as we kill gas we’ll have to start giving massive bonuses to on demand power that isn’t pumping co2, but the absolute lid on that market is the price of storage, which is high enough now, but will drop, it’s unclear how long the gap for nuclear will exist there.
Certainly willing to be wrong though, there’s lots of unknowns with nuclear, quite possibly it could be multiple times cheaper if only we’d invest into it properly.
there is a significant chunk of our energy infrastructure that simply cannot be satisfied in any regard purely with renewables.
BASF can do it, have been able to for ages, they’re switching their feed stocks around depending on price point and push come to shove they could run on nothing but literal potatoes. The Ukraine war was a bit of an extreme situation for them because their piping wasn’t set up for a massive drop in gas availability but they were able to cut consumption by IIRC 60% without affecting production rates.
Steel smelters will have to be rebuilt completely to run on hydrogen and side note it’s more efficient to turn electricity into hydrogen and then smelt than to try and reduce with electricity directly. All of that costs money but by this point it ain’t exactly rocket science.
One massive point that most people are completely blind to is that with energy considerations we are aggressively pursuing two very different goals that in many regards are directly at odds with one another.
The first goal is electrification, which can largely be accomplished by increasing renewables, investing in battery technology, etc. But in the US, we have also been accommodating the desire for electrification by massively increasing natural gas capacity.
The second goal is decarbonization. This requires us to also nix natural gas from the equation at some point. In addition to the problems others have already mentioned (like the fact that renewables aside from hydro are not viable base load power options right now), there is a significant chunk of our energy infrastructure that simply cannot be satisfied in any regard purely with renewables. Like the huge number of industrial processes that need process heat to achieve their end product.
So the best solution is energy portfolio diversity. We can steadily continue to phase out heavy polluters for electrification, but if we want to truly decarbonize, industry demands a solution that can still produce high heat without emissions. Nuclear is a woefully under-exploited technology in that regard, but it is potentially a great solution.
Yup, it’s hard to predict what the mix will look like, but 100% solar would be a very costly solution for sure.
I used to be very pro nuclear, and I still think it could have been a big piece of the puzzle, but I do worry we’ve missed the boat, it could’ve been the first wave of decarbonisation 20 (or more) years ago, I’m not sure how well it can compete growing from almost nothing now with the renewables eating all the easy money. nuclear plants need to run 100% to be successful, and renewables have dropped a bomb on the concept of baseline demand. Maybe as we kill gas we’ll have to start giving massive bonuses to on demand power that isn’t pumping co2, but the absolute lid on that market is the price of storage, which is high enough now, but will drop, it’s unclear how long the gap for nuclear will exist there.
Certainly willing to be wrong though, there’s lots of unknowns with nuclear, quite possibly it could be multiple times cheaper if only we’d invest into it properly.
BASF can do it, have been able to for ages, they’re switching their feed stocks around depending on price point and push come to shove they could run on nothing but literal potatoes. The Ukraine war was a bit of an extreme situation for them because their piping wasn’t set up for a massive drop in gas availability but they were able to cut consumption by IIRC 60% without affecting production rates.
Steel smelters will have to be rebuilt completely to run on hydrogen and side note it’s more efficient to turn electricity into hydrogen and then smelt than to try and reduce with electricity directly. All of that costs money but by this point it ain’t exactly rocket science.