• Zagorath@aussie.zone
    link
    fedilink
    arrow-up
    16
    ·
    10 months ago

    This is basically Monty Hall right? The other child is a girl with 2/3 probability, because the first one being a boy eliminates the case where both children are girls, leaving three total cases, in two of which the other child is a girl (BG, GB, BB).

    • starman2112@sh.itjust.works
      link
      fedilink
      arrow-up
      8
      ·
      10 months ago

      It’s somewhat ambiguous!

      On the one hand, you might be right. This could be akin to flipping two coins and saying that at least one is heads. You’ve only eliminated GG, so BG, GB, and BB are all possible, so there’s only a 1/3 chance that both children are boys.

      On the other hand, you could say this is akin to flipping two coins and saying that the one on the left (or the one who opened the door) is heads. In that case, you haven’t just ruled out GG, you’ve ruled out GB. Conditional probability is witchcraft

      • Zagorath@aussie.zone
        link
        fedilink
        arrow-up
        4
        ·
        10 months ago

        I don’t think the problem is conditional probability, it’s translating word problems to maths problems.

        If you make the assumptions I made, the maths is unambiguous. Namely, I assumed that a child has a 50/50 probability of being born a boy or a girl. I assumed the child who opens the door is random. I don’t think I made any other assumptions that could have been made any other way. With those assumptions, I’m pretty confident my answer is the only correct one, though I’d love to see an argument otherwise.

        If the probability of a child being a girl is different, say, 52%, that will affect the result.

        More interestingly, if the probability of which child opens the door is different, that will affect the result. If there’s a 100% chance the elder child opens the door, it goes to 50/50 of the gender of the second child. This makes it like the “coin on the left” example you gave.

        If we said the elder child is going to open the door 75% of the time…well, the maths becomes more complicated than I can be bothered with right now. But it’s an interesting scenario!

      • lemmefixdat4u@lemmy.world
        link
        fedilink
        arrow-up
        3
        ·
        10 months ago

        Assuming the chance of either sex is equal, this problem can be broken down into multiple cases. The first is that there are two unseen kids in the house. What’s the probability they are both boys? 1/4. Now the door opens and you see two boys. The probability both are boys is 1/1. But if you only see one boy, the problem simplifies into the probability of a child being a boy. One of the probabilistic events postulated in the original problem is fixed at 1. So the answer is 1/2.

        Think of it as the two coin flip, except one coin has two heads. That simplifies to a one coin flip.

    • Sludgeyy@lemmy.world
      link
      fedilink
      arrow-up
      6
      ·
      10 months ago

      No, because knowing the first child is a boy doesn’t tell you any information about the second child.

      Three doors, Girl Girl Boy

      You select a door and Monty opens a door to show a Girl. You had higher odds of picking a girl door to start (2/3). So switching gives you better odds at changing to the door with the Boy because you probably picked a Girl door.

      Here the child being a boy doesn’t matter and the other child can be either.

      It’s 50/50 assuming genders are 50/50.

    • dukk@programming.dev
      link
      fedilink
      arrow-up
      5
      ·
      10 months ago

      Well not really, right? BG and GB are the same scenario here, so it’s a 50/50 chance.

      Even if, say, the eldest child always opened the door, it’d still be a 50/50 chance, as the eldest child being a boy eliminates the possibility of GB, leaving either BG or BB.

      • Zagorath@aussie.zone
        link
        fedilink
        English
        arrow-up
        4
        ·
        10 months ago

        Ironically you’ve got the right answer, but (as you can see in some of the other conversation here) not necessarily for the right reason. It’s not necessarily that BG and GB are the same, but that BB and BB are two different scenarios worthy of being counted separately.

        • dukk@programming.dev
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          10 months ago

          Why is it that BB and BB are being counted separately? I thought that order didn’t matter: you could have two girls, a boy and a girl (or vice versa, same thing), or a two boys. (And then by eliminating two girls you’d have a 50/50 chance).